Designing biomaterials for treating bone injury and infection

Lauren B. Priddy, Ph.D.

Associate Professor, Biomedical Engineering Department of Agricultural & Biological Engineering Mississippi State University

April 16, 2024

ERSITY

SSIDDI SI

Clinical motivation: Bone injury and infection

- Large bone defects
 - 1.6 million bone grafting procedures annually¹
 - Bone is second most commonly transplanted tissue
- Autograft treatment is gold standard
 - Limited graft tissue
 - Donor site morbidity, pain
- Challenges
 - Critically sized defects
 - Unique defect geometries
 - Infection

	% Success
Arthrodesis	80-90%
Fracture	95%
Cavity	~100%
Allograft Host Junctions	95%
Nonunion	80-90%
Defects (>2 cm)	<50%

Data courtesy of George Muschler

Images Courtesy of Georg Duda.

Roux et al., 2021

Designing better biomaterials and therapeutics

Cobb et al., J Orthop Res (2020)

Objective: Utilize a ceramic (hydroxyapatite) coating to enhance the surface functionality and degradation kinetics of load-bearing materials

Motivation

- The emergence of **degradable bone implants** would advance the field of orthopedic implants by:
 - Reducing the need for an implant removal surgery
 - Avoiding pain associated with permanent implants
- Magnesium (Mg) is attractive as a degradable orthopedic implant material
 - Similar mechanical properties to native bone [1]
 - Magnesium ions induce bone growth [2]

Challenge

- On its own, Mg degrades relatively fast compared to the rate of bone healing
- Coating of Mg with a biocompatible material such as the ceramic hydroxyapatite (HA) may slow the degradation of Mg

Agarwal et al., 2015

Gartzke, Ann-Kathrin, et al. "A simulation model for the degradation of magnesium-based bone implants." *Journal of the Mechanical Behavior of Biomedical Materials*, 101 (2020): 103411.
Kraus, Tanja, et al. "Magnesium alloys for temporary implants in osteosynthesis: In vivo studies of their degradation and interaction with bone." *Acta Biomaterialia*, 8.3 (2012): 1230-1238.

- Similar to the inorganic phase of bone
- Increase surface roughness and hydrophilicity
- Mediate local pH
- Promote cell attachment, proliferation, and differentiation
- Modulate degradation rate

PRIDDY HA coating to mitigate the degradation of Mg scaffolds

Objective

 Evaluate the efficacy of HA coating to slow the degradation of additively manufactured (AM) Mg alloy (WE43) scaffolds using *in vitro* and *in silico* models of degradation

Hypothesis

 HA coating would hinder the degradation of AM WE43 scaffolds

Findings

- HA coating method modified from solid disc study \rightarrow thorough coating of porous scaffolds
- Only non-coated scaffolds had a reduction in mass; no change in mass of HA-coated scaffolds
- Higher surface height values for HA-coated scaffolds than for non-coated scaffolds
- HA coating mitigated degradation of porous AM magnesium scaffolds

Finite element modeling of Mg degradation

PRIDDY

LAB

Computational Mechanics and Materials Laboratory Matthew Priddy, Michael W. Hall School of Mechanical Engineering

Bone infection: treatment challenges and outcomes

- Most commonly caused by *Staphylococcus aureus*
 - Trauma, orthopedic implants

PRIDDY

LAB

- Debridement followed by <u>long-term, systemic</u> antibiotic administration
 - Limited capacity to penetrate bone tissue, biofilms
 - Antimicrobial resistant strains
 - Recurrence of infection
 - Increased risk of amputation, especially in diabetic population
- Poly(methyl methacrylate) (PMMA) beads
 - Gold standard for <u>local</u> delivery of antibiotics
 - Nondegradable \rightarrow revision surgery for removal
 - Limited efficacy against implant-related infections

Zalavras et al., 2007 Hatzenbueler et al., 2011 Xing et al., 2013

Cobb et al., 2020

Osteolysis evident from chronic osteomyelitis

baromedical.ca

Designing better biomaterials and therapeutics

PRIDDY Chitosan-based biomaterials for treatment of S. aureus infection

Objective

I AB

Evaluate the efficacy of chitosan-based materials to treat S. aureus infection in chronic and acute models of osteomyelitis and in vitro

Hypothesis

Antimicrobials delivered via chitosan-based biomaterials will effectively combat S. aureus

Orthopedic screw loaded with 5x10⁴ CFU of ATCC 6538-GFP S. aureus

Findings

- Fosfomycin delivered via *both* chitosan hydrogel (CH) and PLA microparticles reduced bacterial load in both bone and soft tissue in a chronic OM model
- Alternative antimicrobials were successful in:
 - Reducing bacterial burden in soft tissue in acute OM model
 - Mitigating bacterial growth in vitro

Equity and inclusion in the Priddy Lab

- Informal discussions at weekly lab meetings
 - "Minute for diversity, equity, and inclusion"
- Our values on lab website
 - Inclusion, equity, and access
 - Mental health
 - STEM outreach
- Manuscript on our efforts towards an inclusive lab – accepted March 2024

Developing Diversity, Equity, and Inclusion Initiatives in a Biomedical Engineering Lab

Xavier J. Person¹, Luke J. Tucker¹, Malley A. Gautreaux¹, Sophie J. McLay¹, Kamryn B. Clymer¹, Anastasia D. Elder^{2,3}, Lauren B. Priddy¹

Perspectives on Undergraduate Research and Mentoring

Thanks to...

COLLEGE OF VETERINARY MEDICINE